Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Thorac Dis ; 16(2): 1074-1086, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38505040

RESUMEN

Background: Acute kidney injury (AKI) is a common and life-threatening complication following pulmonary endarterectomy (PEA). Our study aimed to investigate the risk factors associated with AKI and evaluate the correlation between serum myoglobin (sMb) levels and postoperative AKI. Methods: We conducted a retrospective study involving 134 patients who underwent PEA at China-Japan Friendship Hospital. AKI was defined and staged according to the Kidney Disease Improving Global Outcomes (KDIGO) criteria. Results: During the study period, the incidence of postoperative AKI was 57.5%, and the associated mortality rate was 6.0%. Severe AKI was found to be significantly associated with worse short-term outcomes (P<0.05). Logarithmically transformed postoperative day (POD) 0 sMb levels were significantly associated with AKI [odds ratio (OR) =5.174; 95% confidence interval (CI), 2.307-11.603; P<0.001] and severe AKI (OR =4.605; 95% CI, 1.510-14.048; P=0.007), also had independent predictive value [area under the curve (AUC) =0.776 in AKI and AUC =0.737 in severe AKI]. The optimal cut-off values were 370.544 ng/mL for AKI and 419.473 ng/mL for severe AKI. Furthermore, albumin concentration was found to play a protective role in the development of severe AKI (OR =0.838; 95% CI, 0.716-0.980; P=0.027) when higher than 40.350 g/L. Conclusions: Our findings suggest that a high concentration of POD0 sMb may increase the risk of developing AKI following PEA surgery. Increasing albumin concentration could serve as an effective preventive measure against AKI.

2.
Sci Rep ; 14(1): 233, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167983

RESUMEN

Atherosclerosis is a chronic inflammatory disease characterized with innate and adaptive immunity but also involves pyroptosis. Few studies have explored the role of pyroptosis in advanced atherosclerotic plaques from different vascular beds. Here we try to identify the different underlying function of pyroptosis in the progression of atherosclerosis between carotid arteries and femoral. arteries. We extracted gene expression levels from 55 advanced carotid or femoral atherosclerotic plaques. The pyroptosis score of each sample was calculated by single-sample-gene-set enrichment analysis (ssGSEA). We then divided the samples into two clusters: high pyroptosis scores cluster (PyroptosisScoreH cluster) and low pyroptosis scores cluster (PyroptosisScoreL cluster), and assessed functional enrichment and immune cell infiltration in the two clusters. Key pyroptosis related genes were identified by the intersection between results of Cytoscape and LASSO (Least Absolute Shrinkage and Selection Operator) regression analysis. Finally, all key pyroptosis related genes were validated in vitro. We found all but one of the 29 carotid plaque samples belonged to the PyroptosisScoreH cluster and the majority (19 out of 26) of femoral plaques were part of the PyroptosisScoreL cluster. Atheromatous plaque samples in the PyroptosisScoreL cluster had higher proportions of gamma delta T cells, M2 macrophages, myeloid dendritic cells (DCs), and cytotoxic lymphocytes (CTLs), but lower proportions of endothelial cells (ECs). Immune full-activation pathways (e.g., NOD-like receptor signaling pathway and NF-kappa B signaling pathway) were highly enriched in the PyroptosisScoreH cluster. The key pyroptosis related genes GSDMD, CASP1, NLRC4, AIM2, and IL18 were upregulated in advanced carotid atherosclerotic plaques. We concluded that compared to advanced femoral atheromatous plaques, advanced carotid atheromatous plaques were of higher grade of pyroptosis. GSDMD, CASP1, NLRC4, AIM2, and IL18 were the key pyroptosis related genes, which might provide a new sight in the prevention of fatal strokes in advanced carotid atherosclerosis.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Piroptosis/genética , Células Endoteliales/metabolismo , Interleucina-18 , Aterosclerosis/genética , Aterosclerosis/metabolismo , Arterias Carótidas/metabolismo
3.
J Int Med Res ; 52(1): 3000605231223441, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38258803

RESUMEN

OBJECTIVE: To evaluate the safety and efficacy of bleomycin polidocanol foam (BPF) sclerotherapy for venous malformations (VMs) and analyze the associated clinical outcomes and predictors. METHODS: We retrospectively assessed BPF sclerotherapy outcomes in 138 patients with VMs. We analyzed pain levels, lesion volume reduction, and subjective perception of response. Logistic regression analysis was performed to identify potential predictors of treatment outcome. Additionally, we carefully monitored and recorded complications. RESULTS: There was a notable average reduction in lesion volume by 78.50% ± 15.71%. The pain numerical rating scale (NRS) score decreased from 4.17 ± 2.63 prior to treatment to 1.05 ± 1.54 afterward, and 70.3% of the patients experienced effective relief after a single BPF treatment. Multivariate analysis revealed that a high baseline NRS (odds ratio [OR]: 4.026) and elevated activated partial thromboplastin time (APTT, OR: 1.200) were positive predictors of pain reduction. Additionally, a high baseline NRS score (OR: 1.992) and elevated thrombocytocrit (PCT, OR: 2.543) were positive predictors of incomplete postoperative pain relief. Minor complications occurred in 31 (22.46%) patients. CONCLUSION: BPF sclerotherapy is safe and effective for VMs, resulting in significant reduction in lesion volume, improved symptoms, and minimal complications. APTT and PCT levels are important predictors of pain outcomes following BPF treatment.


Asunto(s)
Bleomicina , Polietilenglicoles , Escleroterapia , Humanos , Bleomicina/uso terapéutico , Polidocanol , Estudios Retrospectivos , Dolor/etiología
4.
J Vasc Surg Venous Lymphat Disord ; 12(2): 101697, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37890588

RESUMEN

OBJECTIVE: This study aims to investigate the difference in safety and efficacy between two treatments for venous malformations (VMs), electrochemotherapy combined with polidocanol foam (ECP) and bleomycin polidocanol foam (BPF), providing alternative therapies for VMs. METHODS: We conducted a retrospective review of 152 patients with VMs treated with ECP and BPF. Pre- and post-treatment magnetic resonance images (MRIs) were collected, and clinical follow-up assessments were performed. Imaging results were used to calculate lesion volume changes. Clinical outcomes included changes in pain and improvements in perceived swelling. Patients were followed up at 1 week and 6 months after surgery. All emerging complications were documented in detail. RESULTS: Of the 152 patients, 87 (57.2%) received BPF treatment, and 65 (42.8%) received ECP treatment. The most common location of VMs was the lower extremities (92/152; 60.2%), and the most common symptom was pain (108/152; 71.1%). Forty-three patients had previously undergone therapy in the BPF group (43/87; 49.4%), whereas 30 patients had received prior treatment in the ECP group (30/65; 46.2%). The study found that the percentage of lesion volume reduction in the BPF group was not significantly different from that in the ECP group (75.00% ± 17.85% vs 74.69% ± 8.48%; P = .899). ECP was more effective when the initial lesion volume was greater than 30 mL (67.66% ± 12.34% vs 73.47% ± 8.00%; P = .048). Patients treated with BPF had significantly less posttreatment pain than those treated with ECP, in different baseline lesion size. In the overall sample, pain relief was significantly higher in the BPF group than in the ECP group (4.21 ± 1.19 vs 3.57 ± 0.76; P = .002). However, there was no difference in pain relief between the two groups for the treatment of initially large VMs (4.20 ± 0.94 vs 3.70 ± 0.87; P = .113). The ECP group was significantly more likely to develop hyperpigmentation (5/87; 5.75% vs 11/65; 16.92%; P = .026) and swelling (9/87; 10.34% vs 16/65; 24.62%; P = .019) 1 week after surgery than the BPF group. CONCLUSIONS: Our study demonstrates that both BPF and ECP are effective treatments for VMs, with BPF being a safer option. ECP is a better choice for patients with the initial lesion volume greater than 30 mL, but it is more likely to lead to early swelling and hyperpigmentation.


Asunto(s)
Electroquimioterapia , Hiperpigmentación , Polietilenglicoles , Malformaciones Vasculares , Humanos , Polidocanol/efectos adversos , Soluciones Esclerosantes , Bleomicina/efectos adversos , Escleroterapia/efectos adversos , Escleroterapia/métodos , Electroquimioterapia/efectos adversos , Malformaciones Vasculares/diagnóstico por imagen , Malformaciones Vasculares/terapia , Malformaciones Vasculares/complicaciones , Resultado del Tratamiento , Dolor/etiología , Estudios Retrospectivos , Hiperpigmentación/etiología
5.
Front Physiol ; 14: 1207390, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37727659

RESUMEN

Objective: This study aimed to investigate the plasma metabolic profile of patients with extracranial arteriovenous malformations (AVM). Method: Plasma samples were collected from 32 AVM patients and 30 healthy controls (HC). Ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) was employed to analyze the metabolic profiles of both groups. Metabolic pathway enrichment analysis was performed through Kyoto Encyclopedia of Genes and Genomes (KEGG) database and MetaboAnalyst. Additionally, machine learning algorithms such as Least Absolute Shrinkage and Selection Operator (LASSO) and random forest (RF) were conducted to screen characteristic metabolites. The effectiveness of the serum biomarkers for AVM was evaluated using a receiver-operating characteristics (ROC) curve. Result: In total, 184 differential metabolites were screened in this study, with 110 metabolites in positive ion mode and 74 metabolites in negative mode. Lipids and lipid-like molecules were the predominant metabolites detected in both positive and negative ion modes. Several significant metabolic pathways were enriched in AVMs, including lipid metabolism, amino acid metabolism, carbohydrate metabolism, and protein translation. Through machine learning algorithms, nine metabolites were identify as characteristic metabolites, including hydroxy-proline, L-2-Amino-4-methylenepentanedioic acid, piperettine, 20-hydroxy-PGF2a, 2,2,4,4-tetramethyl-6-(1-oxobutyl)-1,3,5-cyclohexanetrione, DL-tryptophan, 9-oxoODE, alpha-Linolenic acid, and dihydrojasmonic acid. Conclusion: Patients with extracranial AVMs exhibited significantly altered metabolic patterns compared to healthy controls, which could be identified using plasma metabolomics. These findings suggest that metabolomic profiling can aid in the understanding of AVM pathophysiology and potentially inform clinical diagnosis and treatment.

6.
J Cell Physiol ; 238(8): 1808-1822, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37475193

RESUMEN

Hyperuricemia closely correlates with the development of atherosclerosis, but little is known of the mechanism by which atherosclerosis progression occurs in hyperuricemia. Atherosclerosis appears to involve pyroptosis, an emerging mechanism of proinflammatory regulated cell death. This study tested the hypothesis that pyroptosis underlies the relationship between hyperuricemia and atherosclerosis, using ApoE-/- mice (a model of atherosclerosis), human umbilical vein endothelial cells (HUVECs), and human atherosclerotic arterial samples. We found that hyperuricemia can aggravate the aortic atherosclerotic plaque-load in ApoE-/- mice and promote endothelial cell pyroptosis. Additionally, hyperuricemia can increase the levels of serum inflammatory factors (including IL-1ß and IL-18). Exposure to lipopolysaccharide plus a high concentration of soluble uric acid (≥12 mg/dL) induced cell pyroptosis in HUVECs, as evidenced by increased expression of pyroptosis-related proteins and elevated release of lactate dehydrogenase (a marker of tissue damage). Further, MCC950, a selective nucleotide-binding oligomerization domain (NOD)-like receptor 3 (NLRP3) inflammasome inhibitor, and N-acetyl- l-cysteine, an antioxidant, attenuated HUVEC pyroptosis by inhibiting activation of the NLRP3 inflammasome and production of intracellular reactive oxygen species (ROS). Finally, we detected significantly higher expression of pyroptosis-associated proteins in carotid specimens from patients with hyperuricemia. Collectively, our findings suggest that hyperuricemia can aggravate endothelial cell pyroptosis in aortic atherosclerotic plaques, promoting the development of atherosclerosis. Additionally, a high concentration of soluble uric acid can trigger the activation stage of the NLRP3 inflammasome, mediating endothelial cell pyroptosis, and this process is regulated by the cellular ROS level.


Asunto(s)
Aterosclerosis , Hiperuricemia , Humanos , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Piroptosis , Ácido Úrico/metabolismo , Hiperuricemia/complicaciones , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Aterosclerosis/metabolismo , Apolipoproteínas E/metabolismo
7.
Vascular ; 31(3): 533-543, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35130772

RESUMEN

BACKGROUND/OBJECTIVE: Arteriovenous fistulas (AVFs) are the preferred vascular access for hemodialysis of patients with end-stage renal disease. However, there is a high incidence of AVF failures caused by insufficient outward remodeling or venous neo-intimal hyperplasia formation. Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) play an important role in many cardiovascular diseases. Abnormal VSMC proliferation and migration could be abolished by inhibition of mitochondrial division. METHOD: We found that abnormal proliferation and migration of VSMCs and increased mitochondrial fission were associated with AVF stenosis in patients. We also investigated the mechanisms, particularly the role of mitochondrial dynamics, underlying these VSMC behaviors. In vitro, we observed that inhibition of mitochondrial fission and Akt phosphorylation can diminish proliferation and migration of VSMCs induced by platelet-derived growth factor-BB (PDGF-BB). In vivo, daily intraperitoneal injections of mitochondrial division inhibitor 1 (Mdivi-1) decreased VSMC proliferation and reduced AVF wall thickness in a rat AVF model. CONCLUSION AND RESULT: Our results suggest that inhibition of mitochondrial fission improves AVF patency by reducing wall thickening through the PI3K/Akt signaling pathway. Therefore, inhibition of mitochondrial fission has the clinical potential to improve AVF patency.


Asunto(s)
Fístula Arteriovenosa , Proteínas Proto-Oncogénicas c-akt , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Hiperplasia/metabolismo , Hiperplasia/patología , Dinámicas Mitocondriales , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Proliferación Celular , Miocitos del Músculo Liso/metabolismo
8.
Front Immunol ; 13: 1042751, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36582224

RESUMEN

Introduction: Immune-mediated inflammatory diseases (IMIDs) have been associated with an increased risk of venous thromboembolism (VTE) in multiple observational studies. However, a direct causally relation between IMIDs and VTE remains unclear to date. Here, we used Mendelian randomization (MR) analysis to investigate causal associations between IMIDs and VTE. Methods: We collected genetic data from published genome-wide association studies (GWAS) for six common IMIDs, specifically inflammatory bowel disease (IBD), Crohn's disease (CD), ulcerative colitis (UC), rheumatoid arthritis (RA), psoriasis (PSO), and systemic lupus erythematosus (SLE); and summary-level data for VTE, pulmonary embolism (PE), and deep vein thrombosis (DVT) from the FinnGen database. Two-sample MR analysis using inverse variance weighting (IVW) was performed to identify causal associations between IMIDs and VTE/DVT/PE, and sensitivity analyses were implemented for robustness. Results: IVW analysis showed a causal relationship between genetically predicted UC (one type of IBD) and the risk of VTE (OR = 1.043, 95% CI: 1.013-1.073, p = 0.004) and DVT (OR = 1.088, 95% CI: 1.043-1.136, p < 0.001), but we found no evidence of causality between UC and PE (OR = 1.029, 95% CI: 0.986-1.074, p = 0.19). In addition, no associations were observed between total IBD, CD, RA, SLE, or PSO and VTE/DVT/PE. Sensitivity analysis found no evidence for horizontal pleiotropy. Conclusion: This MR study provides new genetic evidence for the causal relationship between IMIDs and the risk of VTE. Our findings highlight the importance of active intervention and monitoring to mitigate VTE risk in patients with IBD, in particular those presenting with UC.


Asunto(s)
Artritis Reumatoide , Colitis Ulcerosa , Enfermedad de Crohn , Enfermedades Inflamatorias del Intestino , Lupus Eritematoso Sistémico , Embolia Pulmonar , Tromboembolia Venosa , Humanos , Tromboembolia Venosa/etiología , Tromboembolia Venosa/genética , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Agentes Inmunomoduladores , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/complicaciones , Embolia Pulmonar/epidemiología , Embolia Pulmonar/genética , Colitis Ulcerosa/genética , Colitis Ulcerosa/complicaciones , Enfermedad de Crohn/genética , Enfermedad de Crohn/complicaciones , Artritis Reumatoide/etiología , Lupus Eritematoso Sistémico/genética
9.
Biomed Res Int ; 2022: 5610317, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36345357

RESUMEN

Background: The present study is aimed at identifying the differentially expressed genes (DEGs) and relevant biological processes and pathways associated with epicardial adipose tissue (EAT) from patients with coronary artery disease (CAD). We also explored potential biomarkers using two machine-learning algorithms and calculated the immune cell infiltration in EAT. Materials and Methods: Three datasets (GSE120774, GSE64554, and GSE24425) were obtained from the Gene Expression Omnibus (GEO) database. The GSE120774 dataset was used to evaluate DEGs between EAT of CAD patients and the control group. Functional enrichment analyses were conducted to study associated biological functions and mechanisms using the Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Gene Set Enrichment Analysis (GSEA). After this, the least absolute shrinkage and selection operator (LASSO) and support vector machine recursive feature elimination (SVM-RFE) were performed to identify the feature genes related to CAD. The expression level of the feature genes was validated in GSE64554 and GSE24425. Finally, we calculated the immune cell infiltration and evaluated the correlation between the feature genes and immune cells using CIBERSORT. Results: We identified a total of 130 upregulated and 107 downregulated genes in GSE120774. Functional enrichment analysis revealed that DEGs are associated with several pathways, including the calcium signaling pathway, complement and coagulation cascades, ferroptosis, fluid shear stress and atherosclerosis, lipid and atherosclerosis, and regulation of lipolysis in adipocytes. TCF21, CDH19, XG, and NNAT were identified as feature genes and validated in the GSE64554 and GSE24425 datasets. Immune cell infiltration analysis showed plasma cells are significantly more numerous in EAT than in the control group (p = 0.001), whereas macrophage M0 (p = 0.024) and resting mast cells (p = 0.036) were significantly less numerous. TCF21, CDH19, XG, and NNAT were correlated with immune cells, including plasma cells, M0 macrophages, and resting mast cells. Conclusion: TCF21, CDH19, XG, and NNAT might serve as feature genes for CAD, providing new insights for future research on the pathogenesis of cardiovascular diseases.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Humanos , Enfermedad de la Arteria Coronaria/genética , Ontología de Genes , Biomarcadores/metabolismo , Tejido Adiposo/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico
10.
Front Physiol ; 13: 977910, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36187757

RESUMEN

Objective: Abdominal aortic aneurysm (AAA) refers to unusual permanent dilation of the abdominal aorta, and gradual AAA expansion can lead to fatal rupture. However, we lack clear understanding of the pathogenesis of this disease. The effect of perivascular adipose tissue (PVAT) on vascular functional status has attracted increasing attention. Here, we try to identify the potential mechanisms linking AAA and PVAT. Methods: We downloaded dataset GSE119717, including 30 dilated AAA PVAT samples and 30 non-dilated aorta PVAT samples from AAA cases, from Gene Expression Omnibus to identify differentially expressed genes (DEGs). We performed pathway enrichment analysis by Metascape, ClueGo and DAVID to annotate PVAT functional status according to the DEGs. A protein-protein interaction network, the support vector machine (SVM)-recursive feature elimination and the least absolute shrinkage and selection operator regression model were constructed to identify feature genes. Immune infiltration analysis was explored by CIBERSORT. And the correlation between feature gene and immune cells was also calculated. Finally, we used the angiotensin II (Ang II)-ApoE-/- mouse model of AAA to verify the effect of feature gene expression by confirming protein expression using immunohistochemistry and western blot. Results: We identified 22 DEGs, including 21 upregulated genes and 1 downregulated gene. The DEGs were mainly enriched in neutrophil chemotaxis and IL-17 signaling pathway. FOS was identified as a good diagnostic feature gene (AUC = 0.964). Immune infiltration analysis showed a higher level of T cells follicular helper, activated NK cells, Monocytes, activated Mast cells in AAA group. And FOS was correlated with immune cells. Immunohistochemistry and western blot confirmed higher FOS expression in PVAT of the AAA mouse model compared to control group. Conclusion: The differentially expressed genes and pathways identified in this study provide further understanding of how PVAT affects AAA development. FOS was identified as the diagnostic gene. There was an obvious difference in immune cells infiltration between normal and AAA groups.

11.
Front Cardiovasc Med ; 9: 818585, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35656397

RESUMEN

Background: Intraplaque hemorrhage (IPH) is an important feature of unstable plaques and an independent risk factor for cardiovascular events. However, the molecular mechanisms contributing to IPH are incompletely characterized. We aimed to identify novel biomarkers and interventional targets for IPH and to characterize the role of immune cells in IPH pathogenesis. Methods: The microarray dataset GSE163154 which contain IPH and non-IPH plaque samples was obtained from the Gene Expression Omnibus (GEO). R software was adopted for identifying differentially expressed genes (DEGs) and conducting functional investigation. The hub genes were carried by protein-protein interaction (PPI) network and were validated by the GSE120521 dataset. CIBERSORT deconvolution was used to determine differential immune cell infiltration and the relationship of immune cells and hub genes. We confirmed expression of proteins encoded by the hub genes by immunohistochemistry and western blotting in 8 human carotid endarterectomy samples with IPH and 8 samples without IPH (non-IPH). Results: We detected a total of 438 differentially expressed genes (DEGs), of which 248 were upregulated and 190 were downregulated. DEGs were mainly involved in inflammatory related pathways, including neutrophil activation, neutrophil degranulation, neutrophil-mediated immunity, leukocyte chemotaxis, and lysosomes. The hub genes found through the method of degree in the PPI network showed that ITGB2 and ITGAM might play an important role in IPH. Receiver operating characteristic (ROC) results also showed a good performance of these two genes in the test and validation dataset. We found that the proportions of infiltrating immune cells in IPH and non-IPH samples differed, especially in terms of M0 and M2 macrophages. Immunohistochemistry and western blotting analysis showed that expression levels of ITGB2 and ITGAM increased significantly in carotid atherosclerotic plaques with IPH. Conclusion: ITGB2 and ITGAM are key hub genes of IPH and may play an important role in the biological process of IPH. Our findings advance our understanding of the underlying mechanisms of IPH pathogenesis and provide valuable information and directions for future research into novel targets for IPH diagnosis and immunotherapy.

12.
J Card Surg ; 37(6): 1644-1650, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35274764

RESUMEN

BACKGROUND: As a marker of the autonomic nervous system, resting heart rate is a predictor of postoperative atrial fibrillation (POAF). However, its predictive value for POAF after pulmonary thromboendarterectomy (PTE) has not been adequately studied. METHODS: We enrolled 97 patients who underwent PTE in our hospital from December 2016 to November 2021 in this retrospective study. Almost all preoperative characteristics, including electrocardiogram, demographics, hematologic and biochemical indices, echocardiography, and pulmonary hemodynamics, were compared between patients with and without POAF. Multivariate logistic regression analysis was used to identify the independent risk factors for POAF after PTE. RESULTS: Overall, 21 patients (21.6%) suffered from POAF after PTE. Compared with patients without POAF, those with POAF were older (p = .049), with a higher resting heart rate (p = .012), and higher platelet count (p = .040). In the binary logistic regression analysis, the resting heart rate (odds ratio [OR] = 1.043, 95% confidence interval [CI] = 1.009-1.078, p = .012) and age (OR = 1.051, 95% CI = 1.003-1.102, p = .037) were independent risk factors for POAF after PTE. The optimal cutoff point of resting heart rate was 89.5 with sensitivity and specificity of 47.6% and 77.6%. When the cutoff value of the age was 54.5, its sensitivity for predicting POAF was 71.4%, with a specificity of 59.2%. CONCLUSIONS: POAF is common after PTE surgery, and the incidence may be underestimated. The resting heart rate and age are independent preoperative risk factors for POAF after PTE. Considering the lower predictive power of the resting heart and age, further large-scale studies are needed.


Asunto(s)
Fibrilación Atrial , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/epidemiología , Fibrilación Atrial/etiología , Puente de Arteria Coronaria/efectos adversos , Endarterectomía , Frecuencia Cardíaca , Humanos , Complicaciones Posoperatorias/diagnóstico , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Estudios Retrospectivos , Factores de Riesgo
13.
Front Physiol ; 13: 944551, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36589450

RESUMEN

Background: Calcific aortic valve disease (CAVD) is the most common valvular heart disease in the aging population, resulting in a significant health and economic burden worldwide, but its underlying diagnostic biomarkers and pathophysiological mechanisms are not fully understood. Methods: Three publicly available gene expression profiles (GSE12644, GSE51472, and GSE77287) from human Calcific aortic valve disease (CAVD) and normal aortic valve samples were downloaded from the Gene Expression Omnibus database for combined analysis. R software was used to identify differentially expressed genes (DEGs) and conduct functional investigations. Two machine learning algorithms, least absolute shrinkage and selection operator (LASSO) and support vector machine-recursive feature elimination (SVM-RFE), were applied to identify key feature genes as potential biomarkers for Calcific aortic valve disease (CAVD). Receiver operating characteristic (ROC) curves were used to evaluate the discriminatory ability of key genes. The CIBERSORT deconvolution algorithm was used to determine differential immune cell infiltration and the relationship between key genes and immune cell types. Finally, the Expression level and diagnostic ability of the identified biomarkers were further validated in an external dataset (GSE83453), a single-cell sequencing dataset (SRP222100), and immunohistochemical staining of human clinical tissue samples, respectively. Results: In total, 34 identified DEGs included 21 upregulated and 13 downregulated genes. DEGs were mainly involved in immune-related pathways such as leukocyte migration, granulocyte chemotaxis, cytokine activity, and IL-17 signaling. The machine learning algorithm identified SCG2 and CCL19 as key feature genes [area under the ROC curve (AUC) = 0.940 and 0.913, respectively; validation AUC = 0.917 and 0.903, respectively]. CIBERSORT analysis indicated that the proportion of immune cells in Calcific aortic valve disease (CAVD) was different from that in normal aortic valve tissues, specifically M2 and M0 macrophages. Key genes SCG2 and CCL19 were significantly positively correlated with M0 macrophages. Single-cell sequencing analysis and immunohistochemical staining of human aortic valve tissue samples showed that SCG2 and CCL19 were increased in Calcific aortic valve disease (CAVD) valves. Conclusion: SCG2 and CCL19 are potential novel biomarkers of Calcific aortic valve disease (CAVD) and may play important roles in the biological process of Calcific aortic valve disease (CAVD). Our findings advance understanding of the underlying mechanisms of Calcific aortic valve disease (CAVD) pathogenesis and provide valuable information for future research into novel diagnostic and immunotherapeutic targets for Calcific aortic valve disease (CAVD).

14.
J Cell Physiol ; 237(1): 789-803, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34368954

RESUMEN

Chronic thromboembolic pulmonary hypertension (CTEPH) is characterized by proliferative vascular remodeling. Abnormal vascular smooth muscle cell (VSMC) phenotype switching is crucial to this process, highlighting the need for VSMC metabolic changes to cover cellular energy demand in CTEPH. We report that elevated Wnt family member 5B (WNT5B) expression is associated with vascular remodeling and promotes VSMC phenotype switching via mitochondrial dynamics regulation in CTEPH. Using primary culture of pulmonary artery smooth muscle cells, we show that high WNT5B expression activates VSMC proliferation and migration and results in mitochondrial fission via noncanonical Wnt signaling in CTEPH. Abnormal VSMC proliferation and migration were abolished by mitochondrial division inhibitor 1, an inhibitor of mitochondrial fission. Secreted frizzled-related protein 2, a soluble scavenger of Wnt signaling, attenuates VSMC proliferation and migration by accelerating mitochondrial fusion. These findings indicate that WNT5B is an essential regulator of mitochondrial dynamics, contributing to VSMC phenotype switching in CTEPH.


Asunto(s)
Hipertensión Pulmonar , Músculo Liso Vascular , Desdiferenciación Celular , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Humanos , Hipertensión Pulmonar/metabolismo , Dinámicas Mitocondriales/fisiología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Remodelación Vascular/genética , Proteínas Wnt/metabolismo
15.
Front Cardiovasc Med ; 9: 1046931, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36698949

RESUMEN

Purpose: This study aimed to construct a radiomics signature of epicardial adipose tissue for predicting postoperative atrial fibrillation (POAF) after pulmonary endarterectomy (PEA) in patients with chronic thromboembolic pulmonary hypertension (CTEPH). Methods: We reviewed the preoperative computed tomography pulmonary angiography images of CTEPH patients who underwent PEA at our institution between December 2016 and May 2022. Patients were divided into training/validation and testing cohorts by stratified random sampling in a ratio of 7:3. Radiomics features were selected by using intra- and inter-class correlation coefficient, redundancy analysis, and Least Absolute Shrinkage and Selection Operator algorithm to construct the radiomics signature. The area under the receiver operating characteristic curve (AUC), calibration curve, and decision curve analysis (DCA) were used to evaluate the discrimination, calibration, and clinical practicability of the radiomics signature. Two hundred-times stratified five-fold cross-validation was applied to assess the reliability and robustness of the radiomics signature. Results: A total of 93 patients with CTEPH were included in this study, including 23 patients with POAF and 70 patients without POAF. Five of the 1,218 radiomics features were finally selected to construct the radiomics signature. The radiomics signature showed good discrimination with an AUC of 0.804 (95%CI: 0.664-0.943) in the training/validation cohort and 0.728 (95% CI: 0.503-0.953) in the testing cohorts. The average AUC of 200 times stratified five-fold cross-validation was 0.804 (95%CI: 0.801-0.806) and 0.807 (95%CI: 0.798-0.816) in the training and validation cohorts, respectively. The calibration curve showed good agreement between the predicted and actual observations. Based on the DCA, the radiomics signature was found to be clinically significant and useful. Conclusion: The radiomics signature achieved good discrimination, calibration, and clinical practicability. As a potential imaging biomarker, the radiomics signature of epicardial adipose tissue (EAT) may provide a reference for the risk assessment and individualized treatment of CTEPH patients at high risk of developing POAF after PEA.

16.
Front Physiol ; 12: 744219, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858201

RESUMEN

Objective: Chronic thromboembolic pulmonary hypertension (CTEPH) is characterized by thrombofibrotic obstruction of the proximal pulmonary arteries, which result in vascular remodeling of the distal pulmonary artery. While the cellular and molecular mechanisms underlying CTEPH pathogenesis remain incompletely understood, recent evidence implicates vascular remodeling. Here, we identify the molecular mechanisms that contribute to vascular remodeling in CTEPH. Methods: Microarray data (GSE130391) for patients with CTEPH and healthy controls were downloaded from the Gene Expression Omnibus (GEO) and screened for differentially expressed genes (DEGs). DEGs were functionally annotated using Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. A protein-protein interaction (PPI) network was constructed to identify hub genes. Finally, pulmonary artery samples were harvested from patients with CTEPH (n = 10) and from controls (n = 10) and primary vascular smooth muscle cells (VSMCs) were cultured. Effects of the proto-oncogene FOS on VSMC proliferation and migration were assessed using expression and knockdown studies. Results: We detected a total of 292 DEGs, including 151 upregulated and 141 downregulated genes. GO analysis revealed enrichment of DEGs in biological processes of signal transduction, response to lipopolysaccharide, signal transduction, and myeloid dendritic cell differentiation. Molecular function analysis revealed enrichment in tumor necrosis factor (TNF)-activated receptor activity, transcriptional activator activity, and protein homodimerization activity. The expression of TNF-α and its receptor (sTNFR1 and sTNFR2) were significantly higher in CTEPH group, compared with control group. KEGG pathway analysis revealed enrichment in salmonella infection, pathways in cancer, osteoclast differentiation, and cytokine-cytokine receptor interaction. Hub genes in the PPI included FOS, suggesting an important role for this gene in vascular remodeling in CTEPH. Primary VSMCs derived from patients with CTEPH showed increased FOS expression and high proliferation and migration, which was attenuated by FOS inhibition. In control VSMCs, TNF-α treatment increased proliferation and migration, which FOS inhibition likewise attenuated. Conclusion: TNF-α drives CTEPH pathogenesis by promoting VSMC proliferation and migration via increased FOS expression. These results advance our understanding of the molecular mechanisms of vascular remodeling in CTEPH, and may inform the development of new therapeutic targets.

17.
Front Cardiovasc Med ; 8: 704208, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34513949

RESUMEN

Atherosclerosis and its complications diseases remain leading causes of cardiovascular morbidity and mortality, bringing a massive burden on public health worldwide. Atherosclerosis is recognized as chronic inflammation, and involves several highly correlated processes, including lipid metabolism dysfunction, endothelial cell dysfunction, inflammation, oxidative stress, vascular smooth muscle cell activation, platelet activation, thrombosis, altered matrix metabolism, and vascular remodeling. Within the past few decades, accumulating evidence has shown that the Yes-associated protein (YAP), the major effector of the Hippo pathway, can play a crucial role in pathogenesis and development of atherosclerosis. Activation of YAP-related pathways, which are induced by alerting flow pattern and matrix stiffness among others, can regulate processes including vascular endothelial cell dysfunction, monocyte infiltration, and smooth muscle cell migration, which contribute to atherosclerotic lesion formation. Further, YAP potentially modulates atherosclerotic complications such as vascular calcification and intraplaque hemorrhage, which require further investigation. Here, we summarized the relevant literature to outline current findings detailing the relationship between of YAP and atherosclerosis and highlight areas for future research.

18.
J Cell Physiol ; 236(10): 7159-7175, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33755211

RESUMEN

Atherosclerosis is a significant cardiovascular burden and a leading cause of death worldwide, recognized as a chronic sterile inflammatory disease. Pyroptosis is a novel proinflammatory regulated cell death, characterized by cell swelling, plasma membrane bubbling, and robust release of proinflammatory cytokines (such as interleukin IL-1ß and IL-18). Mounting studies have addressed the crucial contribution of pyroptosis to atherosclerosis and clarified the candidate therapeutic agents targeting pyroptosis for atherosclerosis. Herein, we review the initial characterization of pyroptosis, the detailed mechanisms of pyroptosis, current evidence about pyroptosis and atherosclerosis, and potential therapeutic strategies that target pyroptosis in the development of atherosclerosis.


Asunto(s)
Antiinflamatorios/uso terapéutico , Arterias/efectos de los fármacos , Aterosclerosis/tratamiento farmacológico , Citocinas/metabolismo , Inflamasomas/metabolismo , Mediadores de Inflamación/metabolismo , Piroptosis/efectos de los fármacos , Animales , Arterias/metabolismo , Arterias/patología , Aterosclerosis/metabolismo , Aterosclerosis/patología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/patología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Transducción de Señal
19.
Eur J Pharmacol ; 886: 173398, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-32763301

RESUMEN

Stress-induced cardiomyopathy (SIC) is associated with high mortality rates, potentially due to a lack of available therapies. To facilitate the identification of therapeutic targets for SIC, we explored the detailed mechanisms of disease onset and progression using a mouse model. Over-activation of the ß-adrenergic receptor (ß-AR) upon stress leads to inflammasome activation, cytokine cascades, macrophage infiltration, and pathological cardiac remodeling in mice, mimicking SIC. However, the detailed mechanisms by which acute ß-AR stimulation induces cardiac inflammation remain elusive. We found that resveratrol (RSV) could attenuate isoproterenol-induced cardiac inflammation in mice, suggesting that RSV might be a promising therapeutic option in SIC. Mechanistically, we revealed that the SIRT1/NRF2 signaling pathway is the bona fide target of RSV and plays a significant role in the RSV-induced protective effect in cardiac inflammation.


Asunto(s)
Agonistas Adrenérgicos beta , Cardiotónicos/uso terapéutico , Isoproterenol , Miocarditis/inducido químicamente , Miocarditis/prevención & control , Factor 2 Relacionado con NF-E2/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Sirtuina 1/efectos de los fármacos , Animales , Antioxidantes/uso terapéutico , Cardiotónicos/farmacología , Síndrome de Liberación de Citoquinas/inducido químicamente , Síndrome de Liberación de Citoquinas/prevención & control , Inflamasomas/efectos de los fármacos , Activación de Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Resveratrol/uso terapéutico
20.
Cell Res ; 30(9): 794-809, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32546764

RESUMEN

Lung injury and fibrosis represent the most significant outcomes of severe and acute lung disorders, including COVID-19. However, there are still no effective drugs to treat lung injury and fibrosis. In this study, we report the generation of clinical-grade human embryonic stem cells (hESCs)-derived immunity- and matrix-regulatory cells (IMRCs) produced under good manufacturing practice requirements, that can treat lung injury and fibrosis in vivo. We generate IMRCs by sequentially differentiating hESCs with serum-free reagents. IMRCs possess a unique gene expression profile distinct from that of umbilical cord mesenchymal stem cells (UCMSCs), such as higher expression levels of proliferative, immunomodulatory and anti-fibrotic genes. Moreover, intravenous delivery of IMRCs inhibits both pulmonary inflammation and fibrosis in mouse models of lung injury, and significantly improves the survival rate of the recipient mice in a dose-dependent manner, likely through paracrine regulatory mechanisms. IMRCs are superior to both primary UCMSCs and the FDA-approved drug pirfenidone, with an excellent efficacy and safety profile in mice and monkeys. In light of public health crises involving pneumonia, acute lung injury and acute respiratory distress syndrome, our findings suggest that IMRCs are ready for clinical trials on lung disorders.


Asunto(s)
Células Madre Embrionarias Humanas/inmunología , Lesión Pulmonar/terapia , Pulmón/patología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/inmunología , Animales , Células Cultivadas , Femenino , Fibrosis , Haplorrinos , Células Madre Embrionarias Humanas/citología , Humanos , Inmunidad , Inmunomodulación , Pulmón/inmunología , Lesión Pulmonar/inmunología , Lesión Pulmonar/patología , Masculino , Células Madre Mesenquimatosas/citología , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...